POJ 3481 HDU1908 Double Queue SBT

简单的平衡二叉树题,支持三个操作,插入、查询最值、删除,在结构体中用到了运算符重载,为了编码方便,如果不用重载,应该会跑得更快。

我的代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <cstring>

using namespace std;

const int MAX = 1100000;

struct In {
int id;
int pro;
In() {}
In(int id, int pro) : id(id), pro(pro) {}
bool operator==(const In& in) const { return id == in.id && pro == in.pro; }
bool operator<(const In& in) const {
if (pro != in.pro) {
return pro < in.pro;
} else {
return id < in.id;
}
}
bool operator<=(const In& in) const { return *this < in || *this == in; }
bool operator>(const In& in) const { return !(*this <= in); }
bool operator>=(const In& in) const { return !(*this < in); }
};

struct Node {
int left, right, size, cnt;
In key;
void init() {
left = right = 0;
size = 1;
}
} node[MAX];
int tol;
int root;

void init() { tol = root = 0; }

void Lt(int& t) {
int k = node[t].right;
node[t].right = node[k].left;
node[k].left = t;
node[k].size = node[t].size;
node[t].size = node[node[t].left].size + node[node[t].right].size + 1;
t = k;
return;
}

void Rt(int& t) {
int k = node[t].left;
node[t].left = node[k].right;
node[k].right = t;
node[k].size = node[t].size;
node[t].size = node[node[t].left].size + node[node[t].right].size + 1;
t = k;
return;
}

void keep(int& t, bool flag) {
if (flag == 0) {
if (node[node[node[t].left].left].size > node[node[t].right].size)
Rt(t);
else if (node[node[node[t].left].right].size > node[node[t].right].size) {
Lt(node[t].left);
Rt(t);
} else
return;
} else {
if (node[node[node[t].right].right].size > node[node[t].left].size)
Lt(t);
else if (node[node[node[t].right].left].size > node[node[t].left].size) {
Rt(node[t].right);
Lt(t);
} else
return;
}
keep(node[t].left, 0);
keep(node[t].right, 1);
keep(t, 0);
keep(t, 1);
return;
}

void insert(int& t, const In& v) {
if (t == 0) {
t = ++tol;
node[t].init();
node[t].key = v;
} else {
node[t].size++;
if (v < node[t].key)
insert(node[t].left, v);
else
insert(node[t].right, v);
keep(t, v >= node[t].key);
}
return;
}

int del(int& t, const In& v) {
if (!t) return 0;
node[t].size--;
if (v == node[t].key || v < node[t].key && !node[t].left ||
v > node[t].key && !node[t].right) {
if (node[t].left && node[t].right) {
int p = del(node[t].left, In(v.id + 1, v.pro));
node[t].key = node[p].key;
return p;
} else {
int p = t;
t = node[t].left + node[t].right;
return p;
}
} else
return del(v < node[t].key ? node[t].left : node[t].right, v);
}

In select(int t, int k) {
if (k <= node[node[t].left].size)
return select(node[t].left, k);
else if (k > node[node[t].left].size + 1)
return select(node[t].right, k - node[node[t].left].size - 1);
return node[t].key;
}

int getmax(int t) {
while (node[t].right) t = node[t].right;
return t;
}

int getmin(int t) {
while (node[t].left) t = node[t].left;
return t;
}

int main() {
int id, pro;
init();
while (scanf("%d", &id), id) {
if (id == 1) {
scanf("%d%d", &id, &pro);
insert(root, In(id, pro));
} else if (id == 2) {
if (tol == 0) {
puts("0");
} else {
id = getmax(root);
printf("%d\n", node[id].key.id);
del(root, node[id].key);
}
} else {
if (tol == 0) {
puts("0");
} else {
id = getmin(root);
printf("%d\n", node[id].key.id);
del(root, node[id].key);
}
}
}
return 0;
}